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Benchmark single-step ethylene purification
from ternary mixtures by a customized
fluorinated anion-embedded MOF

Yunjia Jiang,1,4, Yongqi Hu,1,4, Binquan Luan,2, Lingyao Wang,1,
Rajamani Krishna, 3, Haofei Ni,1, Xin Hu1 & Yuanbin Zhang 1

Ethylene (C2H4) purification from multi-component mixtures by physical
adsorption is a great challenge in the chemical industry. Herein, we report a
GeF6

2- anion embedded MOF (ZNU-6) with customized pore structure and
pore chemistry for benchmark one-step C2H4 recovery from C2H2 and CO2.
ZNU-6 exhibits significantly high C2H2 (1.53mmol/g) and CO2 (1.46mmol/g)
capacity at 0.01 bar. Record high C2H4 productivity is achieved from C2H2/
CO2/C2H4 mixtures in a single adsorption process under various conditions.
The separation performance is retained over multiple cycles and under humid
conditions. The potential gas binding sites are investigated by density func-
tional theory (DFT) calculations, which suggest that C2H2 and CO2 are pre-
ferably adsorbed in the interlaced narrow channel with high aff0inity. In-situ
single crystal structures with the dose of C2H2, CO2 or C2H4 further reveal the
realistic host-guest interactions. Notably, rare C2H2 clusters are formed in the
narrow channel while two distinct CO2 adsorption locations are observed in
the narrow channel and the large cavity with a ratio of 1:2, which accurately
account for the distinct adsorption heat curves.

Ethylene (C2H4) is the foremost olefin as well as the highest volume
product in the petrochemical industry, with an annual production
capacity exceeding 214million tons in 20211. The manufacture of C2H4

and C3H6 accounts for 0.3% of global energy2. Current C2H4 produc-
tionmainly relies on streamcracking of hydrocarbons3–6. Alternatively,
oxidative coupling of methane (CH4) has emerged as a promising
technique to produceC2H4, amongwhich acetylene (C2H2) and carbon
dioxide (CO2) are generated as byproducts and need to be deeply
removed to produce polymer grade (>99.996%) C2H4

7. Presently,
multi-step purification process is adopted for purification of C2H4

from C2H4/C2H2/CO2 mixtures in industry8. C2H2 is removed by
catalytic hydrogenation using expensive noble-metal catalysts or sol-
vent extraction, which is either energy intensive or associated with

pollution9,10. CO2 is removed by chemical adsorption using caustic
soda, which causes huge waste of costly solvents11.

Physical adsorption offers potential to significantly reduce the
energy footprint of separation processes12–21. Nonetheless, C2H4 pur-
ification from ternary C2H4/C2H2/CO2 mixtures remains an unmet
challenge due to the similarity in molecular size and polarity (Supple-
mentary Table 2), although separation of C2H2/C2H4

22–26 or C2H2/
CO2

27–32 binary mixtures has been realized by a plethora of porous
materials. Besides, single-step purification of C2H4 from ternary C2H2/
C2H4/C2H6

33,34 or quaternary C2H2/C2H4/C2H6/CO2
35 mixtures has also

been realized by several porous materials. To date, less than ten
materials have been demonstrated to separate C2H4 from C2H4/C2H2/
CO2, including activated carbons, zeolites, covalent organic frameworks
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and metal organic framework (MOFs)36–39. TIFSIX-17-Ni36, NTU-6537, and
NTU-6738 are so far the three optimal materials. TIFSIX-17-Ni36 exhibits
highC2H2/C2H4 andCO2/C2H4 selectivity due to the negligible uptake of
C2H4 under ambient condition. However, the capacity of C2H2

(3.30mmol/g) and CO2 (2.20mmol/g) is relatively low due to the over-
contracted channel. NTU-6537 can selectively capture C2H2 and CO2 by
tuning the gate opening. However, the applied temperature must be at
263K because lower temperatures lead to the adsorption of all the
gases while higher temperatures cause the exclusion of CO2. NTU-67

38

displays similar C2H2 (3.29mmol/g) and CO2 (2.04mmol/g) capacity,
but the C2H2/C2H4 and CO2/C2H4 selectivity is greatly reduced as the
C2H4 capacity (1.41mmol/g) is relatively high. Additionally, the separa-
tion performance is deteriorated under humid conditions. Therefore,
there is still a lack of ideal and stable materials to realize the simulta-
neous removal of C2H2 and CO2 in C2H2/CO2/C2H4 mixtures.

In this work, we reported a GeF6
2− anion embedded MOF ZNU-6

(ZNU=Zhejiang Normal University) with large cages (~8.5 Å diameter)
connected by narrow interlaced channels (~4 Å diameter) for bench-
mark one-stepC2H4 recovery fromC2H2 andCO2. ZNU-6 is constructed
by CuGeF6 and tri(pyridin-4-yl)amine (TPA) and exhibits excellent
chemical stability. Static gas adsorption isotherms showed that ZNU-6
takes up 1.53/8.06mmol/g of C2H2 and 1.46/4.76mmol/g of CO2 at 0.01
and 1.0 bar (298 K), respectively. The calculated IAST selectivities for
C2H2/C2H4 (1/99) and CO2/C2H4 (1/99) are 43.8–14.3 and 52.6–7.8
(0.0001–1.0 bar), respectively. The calculated Qst values at near-zero
loading for C2H2 and CO2 are 37.2 and 37.1 kJ/mol, indicative of its
facility for material regeneration but much higher than that of C2H4

(29.0 kJ/mol). Modeling study indicates that there are two potential
binding sites for C2H2, C2H4, and CO2. One is in the interlaced channel
and the other locates in the large cage. Moreover, all gas molecules
prefer to be adsorbed in the interlaced channel with higher affinity.
The realistic binding sites and host–guest interactions under normal
conditions (298 K and 1.0 bar) were further demonstrated by in-situ
single crystal structures with the saturated dose of gases. Notably,
rare C2H2 clusters formed by π···π packing and C-H···C≡C interactions
are observed in the interlaced channel with a small proportion of
C2H2 molecules adsorbed in the large cage additionally. In sharp con-
trast, only 1/3 of CO2 molecules are located in the narrow channel
while 2/3 of CO2 molecules are accommodated in the large cavity.
This distinct gas distribution is highly consistent with the difference of
adsorption heat curves. The practical C2H4 purification performance
is further demonstrated by dynamic breakthroughs and record
high C2H4 productivity is achieved from ternary C2H2/CO2/C2H4

mixtures in a single adsorption process under various conditions.
The separation performance is retained overmultiple cycles and under
humid conditions.

Results
Violet single crystals of ZNU-6 (Supplementary Fig. 1) were produced
by layering a MeOH solution of TPA onto an aqueous solution
of CuGeF6 (Fig. 1a). X-ray crystal analysis revealed that ZNU-6
[Cu6(GeF6)6(TPA)8] crystallizes in a three-dimensional (3D) frame-
work in the cubic Pm-3n space group. Everyunit cell consists of sixCu2+

ions, six GeF6
2- anions, and eight tridentate TPA ligands (Supplemen-

tary Table 1). The combination of Cu2+ and TPA produces a cationic pto
network first (Fig. 1b), which determines the main pore size. The net-
work is further embedded by GeF6

2− pillar to give a ith-d topology
framework with optimal pore chemistry (Fig. 1c). The frameworks are
composed of large icosahedral cage-like pores (~8.5 Å) and interlaced
narrow channels (~4 Å) (Fig. 1d–f). Each large cage is surrounded by 12
channels and every interlaced channel connects 4 cages. The adjacent
two cages and two channels share the same GeF6

2- anions at the edge.
Both large pores and interlaced channels are abundant of Lewis basic F
functional sites on the surface for gas binding. Such interconnected
large cages and narrow channels are distinct from previous straight

1D channels of anion pillared MOFs (e.g., SIFSIX-1-Cu, SIFSIX-3-Ni).
Besides, the narrow channel size may provide kinetic selectivity for
C2H2 (3.3 Å) and CO2 (3.3 Å) given their small molecular size compared
to C2H4 (4.2 Å). Thus, ZNU-6 with abundant functional GeF6

2− binding
sites, high porosity for C2H2 and CO2 accommodation and narrow
channel for kinetic preference features the promising characteristics
for efficient purification of C2H4 from ternary C2H2/CO2/C2H4mixture.

The intrinsic porosity of ZNU-6was investigated by N2 adsorption
at 77 K. As shown in Fig. 2a, ZNU-6 exhibited a type I adsorption iso-
therm. The Brunauer–Emmett–Teller surface area and pore volume
were calculated to be 1330.3m2/g and 0.554 cm3/g (Supplementary
Fig. 10). The calculated pore size ranges from 8.22 to 10.76 Å with the
summit in 9.0 Å, highly close to the pore aperture of ~8.5 Å evaluated
from the single crystal structure (Fig. 2a). Then, single-component
adsorption isotherms of C2H2, CO2, and C2H4 were collected at 298K
(Fig. 2b). At 1.0 bar, the C2H2 andCO2 uptakes are 8.06 and 4.76mmol/
g, higher than those ofmost APMOFs (Fig. 2c). The capacities are equal
to 4.68 and 2.77 gasmolecules per GeF6

2− anion. Such high C2H2/anion
and CO2/anion uptakes have never been realized in anion pillared
MOFs (Supplementary Table S7)36–38,40–44. Particularly, C2H2/anion and
CO2/anion uptakes in benchmark TIFSIX-17-Ni36, SIFSIX-17-Ni36 and
NTU-6738 are only 1.36/0.91, 1.29/0.9 and 2.06/1.28, respectively
(Supplementary Fig. 25). So far, isomorphic SIFSIX-Cu-TPA40 displays
the ever highest C2H2/anion (4.44) uptake while SIFSIX-1-Cu41 displays
the ever highest CO2/anion (2.72) uptake. It is worth mentioning that
these records have been marginally surpassed by ZNU-6’s (Supple-
mentary Fig. 25). Notably, the uptakes of C2H2 and CO2 on ZNU-6 at
0.01 bar are as high as 1.53 and 1.46mmol/g, superior to those of
all the porous materials in the context of ternary C2H2/CO2/C2H4

separation, such as TIFSIX-17-Ni (1.38/0.32mmol/g)36, SIFSIX-17-Ni
(0.91/0.20mmol/g)36, NTU-67 (0.47/0.65mmol/g)38, and TpPa-NO2

(0.17/0.03mmol/g)39. At 0.1 bar, the capacities of C2H2 and CO2 reach
up to 4.64 and 2.21mmol/g (Fig. 2b), even higher than the uptakes of
many porous materials at 1 bar and 298K, for example, TIFSIX-17-Ni
(3.30/2.20mmol/g)36. In the meantime, the C2H4 uptakes on ZNU-6 at
0.01 and 0.1 bar are only 0.15 and 1.07mmol/g, much lower than those
of C2H2 and CO2 under the same conditions. The C2H2, CO2, and C2H4

adsorption isothermswere further collected at 278 and 308K (Fig. 2d).
The adsorption capacities ofC2H2 andCO2 at 1 bar increase to 8.74 and
6.26mmol/g at 278 K. As selectivity is also an important parameter to
assess the separation performance, we further calculated the C2H2/
C2H4 and CO2/C2H4 selectivities on ZNU-6 using ideal adsorbed solu-
tion theory (IAST) after fitting isotherms into dual site Langmuir or
single site Langmuir equation with excellent accuracy. The IAST
selectivity for 1/99 C2H2/C2H4 is 43.8–14.3 (Fig. 2e), higher than those
of NTU-67 (8.1)38 and TpPa-NO2 (5.9)

39. The IAST selectivities for 1/99
CO2/C2H4 mixture is also as high as 52.6-7.8 (Fig. 2e). Besides, both
C2H2/C2H4 and CO2/C2H4 selectivity on ZNU-6 is improved with the
pressure decrease or the increase of C2H4 ratios (from 90% to 99%) in
the binary mixtures (Supplementary Figs. 13, 14), indicating ZNU-6 is
favored for trace C2H2 and CO2 capture from bulky C2H4 mixtures.
Apart from the IAST selectivity, the Henry coefficients were also cal-
culated to evaluate the Henry’s selectivity of ZNU-6 (Supplementary
Figs. 15–17), the Henry’s selectivity for C2H2/C2H4 and CO2/C2H4 is 8.2
and 7.8, respectively, superior to those of NTU-67 (2.4/4.2)38 and TpPa-
NO2 (4.0/1.8)

39 (Supplementary Tables 4, 5). We further calculated the
isosteric enthalpy of adsorption (Qst) for ZNU-6 by using the Clausius-
Clapeyron equation.Qst values at near-zero loading for C2H2, CO2, and
C2H4 are 37.2, 37.1, and 29.0 kJ/mol (Fig. 2f), respectively, indicative of
the preferred affinity of C2H2 and CO2 over C2H4. Notably, the Qst

values for C2H2 and CO2 on ZNU-6 are only modestly high and slightly
lower than those of many top-performing materials in the context of
C2H4 purification, such as SIFSIX-17-Ni (44.2/40.2 kJ/mol)36, TIFSIX-17-
Ni (48.3/37.8 kJ/mol)36, andNTU-67 (44.1/41.5 kJ/mol)38. Suchmoderate
Qst endows facile regeneration of ZNU-6 under mild conditions.

Article https://doi.org/10.1038/s41467-023-35984-5

Nature Communications |          (2023) 14:401 2



Fig. 1 | Porous structure of ZNU-6. a–c Exquisite control of pore size/shape and
pore chemistry in ZNU-6 from pillared (3,4)-connected pto network to GeF6

2−

embedded ith-d topology framework;dOverview of ZNU-6 structurewith cage-like

pores and interlaced channels. e Structure and size of the cage-like pore. f Structure
and size of the interlaced channel connecting four cages.
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To gain more insights into the gas adsorption behavior, density
functional theory (DFT)-based calculations (see Method section) were
applied to identify the adsorption configuration and binding energies
of C2H2, CO2, and C2H4. For all gases, two different binding sites were
observed. Site I is in the interlaced channel and Site II is in the large
cavity (Fig. 3). For C2H2 in Site I, the two hydrogen atoms interact
strongly with three F atoms with the distances of 1.80, 1.93, and 2.37 Å.
The calculated binding energy is 57.1 kJ/mol (Fig. 3a). As for C2H2

adsorbed in Site II, only one hydrogen atom can interact with the
adjacent F atoms with the distance of 2.23 and 2.24 Å, and the corre-
sponding binding energy decreases to 37.9 kJ/mol (Fig. 3b), indicating
that C2H2 is preferentially adsorbed in the narrow channel. The same
results are also observed for CO2 and C2H4, the binding energies in the
channel are much higher than those in the large cage. In Site I, CO2 is
trapped by two strong and two weak electrostatic F···C=O interactions
in the distance of 2.89, 3.02, 3.60, and 3.90Å, the binding energy
is 52.8 kJ/mol (Fig. 3c); C2H4 is adsorbed via two F···H interactions
(2.29 and 2.37 Å)with the binding energy of 43.3 kJ/mol (Fig. 3e). In Site
II, the binding energy of CO2 drops to 40.7 kJ/mol with the number of
electrostatic F···C=O interactions (2.74 and 2.87Å) decreasing to two
(Fig. 3d); the binding energy of C2H4 reduces to 25.3 kJ/mol with the
length of F···H extending to 2.55 and 2.32 Å (Fig. 3f). In addition, it is
notable that either in Site I or II, the binding energy of C2H2 or CO2 is
superior to thatof C2H4, confirming that the adsorption of C2H2 or CO2

in ZNU-6 is more preferable than that of C2H4.
Although DFT calculations have identified two different binding

sites for each gas, it is still difficult to understand the distinct
adsorption heat curves. Therefore, we further studied the in-situ
structures of ZNU-6 with gas loading (Fig. 4). We found that averagely
25.78 C2H2, 18 CO2, or 13.07 C2H4 molecules can be adsorbed per unit
cell of ZNU-6 (Supplementary Table 1), corresponding to 4.3 C2H2, 3.0
CO2, and 2.2 C2H4 molecules for each GeF6

2- anion, which are close to
the saturated values from gas adsorption isotherms (4.63 C2H2, 2.77
CO2, and 2.75 C2H4). Both of C2H2 and CO2 have two binding sites, i.e.,
Site I in the interlaced channel and Site II in the large cage. Notably, the
amount of C2H2 molecules distributed to the two locations is 3.8 and

0.5 per GeF6
2- anion while that for CO2 is 1 and 2 per GeF6

2− anion
(Fig. 4a, b). Such different gas distribution can precisely account for
the C2H2Qst curvewith amodest decrease and theCO2Qst curvewith a
sharp decrease along the gas loading. Specifically, C2H2 molecules
adsorbed in Site I bind to F atoms on the surface of the channels via
multiple cooperative hydrogen bonds (C-H···F = 1.97–2.55 Å), and the
others in Site II interact F atoms via singleH···F hydrogenbondwith the
distance of 2.51 Å (Fig. 4a and Table 1). Besides, the C2H2 molecules in
Site I aggregate to form a stacked gas cluster by π···π packing and C-
H···C≡C interactions, which has rarely been observed previously.
RegardingCO2, it is trappedbyF···C=Oelectrostatic interaction inSite I
and II (Fig. 4b). The only difference is that the C···F distance is 2.64 Å in
Site I and 2.80 Å in Site II (Table 1). From the single crystal structure,
two different CO2 molecules that are very close and opposite to each
other in the narrow channel (site I) are observed. However, these two
CO2 molecules cannot exist in the same narrow channel at the same
time and thus both CO2 molecules display the occupancy of 50%. In
Site II, the C atom of CO2 is ordered while the O atoms are disordered
to two perpendicular positions with the occupancy of 50% for each
configuration. Besides, the linear CO2 molecules are slightly bent due
to the strong attraction from GeF6

2− anion. The bent angle of 157.5° (in
Site I) and 170.8° (in Site II) are consistentwith the interaction strength.
In term of C2H4, only one site in the narrow channel is found. The C
atoms of C2H4molecule are orderedwhile theH atoms are disordered.
The distances of C-H···F interactions between C2H4 and framework are
2.31–2.64 Å (Fig. 4c and Table 1). Considering the slight lower C2H4/
GeF6

2− ratio observed in the single crystal structure, there should
be some C2H4 molecules adsorbed in the large cage. However, due
to the probable disorder of C2H4 molecules over the whole cage, the
C2H4 molecules in Site II were not solved. Nonetheless, this uniform
adsorption configuration is consistent with the flatQst curve for C2H4.

Apart from the C2H2, CO2, or C2H4 molecules, some water mole-
cules were also identified in the framework (Supplementary Fig. 4). As
there is still a lot of space in the large cavity after saturated adsorption
of C2H2, CO2, or C2H4 gases at 100 kPa, the water adsorption behavior
probably occurred during the single crystal measurement, which is

Fig. 3 | The DFT optimized gas adsorption configuration. Binding sites I, II of C2H2 (a, b), CO2 (c, d), and C2H4 (e, f).
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exposed to air. Interestingly, these water molecules are distant
from GeF6

2-
, indicating that these H2O molecules do not occupy the

binding sites for the targeted gases. Instead, some unique interactions
are observed between the gas molecules and water molecules, e.g.,
O-H···C=O hydrogen bonds between CO2 and H2O. Notably, our
resolved single crystal structures show completely different C2H2 and
CO2 adsorption configurations from those of isomorphic SIFSIX-Cu-
TPA for C2H2/CO2 separation in Wu’s work39.

Motivated by the high adsorption capacity and selectivity in
single-component adsorption as well as the in-situ single crystal
structure analysis, breakthrough experiments were conducted for
C2H2/C2H4, CO2/C2H4, and C2H2/CO2/C2H4 mixtures. The results
showed that highly efficient separations can be accomplished by ZNU-
6 for all the gasmixtures under various conditions. For 1/99 C2H2/C2H4

mixtures, C2H4 is eluted at 12minswhile C2H2 is detected until 192min.
For 10/90 CO2/C2H4 mixtures, C2H4 and CO2 are detected at 12 and
43.5min, respectively (Fig. 5a). For 1/1/98 C2H2/CO2/C2H4 mixtures,
C2H2 and CO2 broke out simultaneously and 64.42mol/kg of polymer
grade C2H4 is produced by single adsorption process (Fig. 5b). The
productivity is improved to 80.89mol/kg when decreasing the tem-
perature to 283 K (Supplementary Fig. 46). TheCO2breakthrough time
becomes shortened with the increase of CO2 ratio, which is 72 and
52min for 1/5/94 (Figs. 5c) and 1/9/90 (Fig. 5d) C2H2/CO2/C2H4 mix-
tures. The polymer grade C2H4 productivity is 21.37 and 13.81mol/kg,
respectively. Asmost reported C2H4 productivity fromC2H2/CO2/C2H4

mixtures are compared under 1/9/90, a comparison plot of the
C2H4 productivity and dynamic C2H2 capacity from 1/9/90 C2H2/CO2/
C2H4 mixtures is presented in Fig. 5e. ZNU-6 displays the record
high C2H4 productivity and second highest C2H2 dynamic capacity.
The C2H4 productivity of ZNU-6 is >2.5 folds of the previous bench-
mark of NTU-67 (5.42mol/kg)38. C2H4 productivity with the unit of
mol/kg/h is also calculated for comparison (SupplementaryTable S10).
ZNU-6 with the productivity of 15.93mol/kg/h is the highest repor-
ted value.

In view of the importance of the recyclability and stability of
porous materials for practical applications, the water and thermal
stability of ZNU-6was investigated. There was no noticeable loss in the
CO2 adsorption capacity after six cycles of adsorption/desorption
experiments (Supplementary Fig. 26). Long time soaking of ZNU-6 in
water or polar organic solvents such as DMSO, DMF andMeCN did not
change the porous structure of ZNU-6, as demonstrated by the PXRD

patterns as well as the gas adsorption isotherms (Supplementary
Fig. 7). Thermogravimetric analysis (TGA) and temperature varied
PXRD indicated ZNU-6 is stable below 200 °C (Supplementary Figs. 8,
9). Breakthroughs under humid conditions or over four cycles pre-
served nearly the identical separation performance (Fig. 5f). Although
many water molecules can be adsorbed in ZNU-6, as described in in-
situ crystals and water adsorption isotherms (Supplementary Fig. 27),
the presence of humid has negligible influence on the separation
performance (Fig. 5f). This is probably due to the co-adsorption of
water and target gases as well as the fast C2H2/CO2/C2H4 diffusion
kinetics (Supplementary Fig. 29–31).

Discussion
In conclusion, we reported a GeF6

2− anion embedded metal organic
framework ZNU-6 with optimal pore structure and pore chemistry for
benchmark one-step C2H4 purification by simultaneous removal of
C2H2 and CO2. ZNU-6 exhibits remarkably high C2H2 and CO2 capacity
under both low and high pressures. The C2H2/anion and CO2/anion
uptakes are the highest among all the anionpillaredMOFs. 64.42, 21.37,
13.81mol/kg polymer grade C2H4 can be produced from C2H2/CO2/
C2H4 (1/1/98, 1/5/94, 1/9/90) mixtures, all superior to the previous
benchmarks. The separation performance is sustained over multiple
cycles or under humid conditions. The potential gas binding sites are
investigated by DFT calculation, which indicate that C2H2 and CO2 are
preferentially adsorbed in the interlaced narrow channel with high
affinity. In-situ single crystal structures with the dose of C2H2, CO2 or
C2H4 further reveal the realistic host–guest interactions, accounting for
the distinct shapes of the adsorption heat curves. In general, our
work highlights the significance of regulating pore structure and pore
chemistry in porous materials to construct multiple cooperative
functionalities for gas separation.

Methods
Synthesis of ZNU-6
To a 5mL long thin tube was added a 1mL of aqueous solution with
Cu(NO3)2·3H2O (~1.3mg) and (NH4)2GeF6 (~1.0mg). 2mL of MeOH/H2O
mixture (v:v = 1:1) was slowly layered above the solution, followed by a
1mL of MeOH solution of TPA (~1.0mg). The tube was sealed and left
undisturbedat 298K.After ~1week, purple single crystalswereobtained.

Preparation of gas loaded ZNU-6
The crystalline sample of ZNU-6 was filled into a glass tube and heated
at 120 °C under vacuum for 24 h. After the sample cooling down, CO2,
C2H2, or C2H4was introduced into the sample respectivelywith Builder
SSA 7000 (Beijing) instrument until thepressure reach to 1 bar at 298 K
and the state is maintained for another hour. Then, the crystals were
picked out, covered with the degassed oil, and single crystal X-ray
diffraction measurements were then carried out at 298K as soon as
possible.

Fig. 4 | Single crystal structure of gas-loaded ZNU-6. a C2H2 @ ZNU-6 [Cu6(GeF6)6(TPA)8 (C2H2)25.78]; b CO2 @ ZNU-6 [Cu6(GeF6)6(TPA)8 (CO2)18]; c C2H4 @ ZNU-6
[Cu6(GeF6)6(TPA)8 (C2H4)13.07].

Table 1 | The distances of the host–guest interactions

Crystals Site I Site II

25.78 C2H2 @ ZNU-6 1.97/2.55Å (C-H···F) 2.51 Å (C-H···F)

18 CO2 @ ZNU-6 2.64Å (C···F) 2.80Å (C···F)

13.07 C2H4 @ ZNU-6 2.31/2.54/2.64Å (C-H···F) -
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Single-crystal X-ray diffraction
Single-crystal X-ray diffraction studies were conducted on the Bru-
kerAXS D8 VENTURE diffractometer equipped with a PHOTON-100/
CMOS detector (GaKα, λ = 1.34139 Å). Indexing was performed
using APEX2. Data integration and reduction were completed using
SaintPlus 6.01. Absorption correction was performed by the multi-
scan method implemented in SADABS. The space group was deter-
mined using XPREP implemented in APEX2.1 The structure was
solvedwith SHELXS-97 (directmethods) and refined on F2 (nonlinear
least-squares method) with SHELXL-97 contained in APEX2, WinGX
v1.70.01, and OLEX2 v1.1.5 program packages. All non-hydrogen
atoms were refined anisotropically. The contribution of disordered
solvent molecules was treated as diffuse using the Squeeze routine
implemented in Platon.

Powder X-ray diffraction
Powder X-ray diffraction (PXRD) data were collected on the SHI-
MADZU XRD-6000 diffractometer (Cu Kαλ = 1.540598 Ǻ) with an
operating power of 40 kV, 30mA and a scan speed of 4.0°/min. The
range of 2θ was from 5° to 50°.

Thermal gravimetric analysis
Thermal gravimetric analysis was performed on the TGA STA449F5
instrument. Experiments were carried out using a platinum pan under
nitrogen atmosphere which conducted by a flow rate of 60mL/min
nitrogen gas. The data were collected at the temperature range of
50 °C to 600 °C with a ramp of 10 °C /min.

The static gas/vapor adsorption equilibrium measurements
The static gas adsorption equilibrium measurements were performed
on the Builder SSA 7000 instrument. The water vapor adsorption
equilibrium measurements were performed on the BeiShiDe DVS
instrument. Beforemeasurements, the sample of ZNU-6 (~100mg)was
evacuated at 25 °C for 2 h firstly, and then at 120 °C for 12 h until
the pressure dropped below 7μmHg. The sorption isotherms were

collected at 77 K, 278, 298, and 308K on activated samples. The
experimental temperatures were controlled by liquid nitrogen bath
(77 K) and water bath (278, 298, and 308K), respectively.

Breakthrough experiments
The breakthrough experiments were carried out on a dynamic gas
breakthrough equipment. The experiments were conducted using a
stainless steel column (4.6mm inner diameter × 50mm length). The
weight of ZNU-6 powder packed in the columns were 0.5806 g. The
columnwas activated at 75 °C for 2 h under vacuum, and then raised to
120 °C for overnight. Themixed gasofC2H2/C2H4 (1/99, v/v), CO2/C2H4

(10/90, v/v), or C2H2/CO2/C2H4 (1/9/90, 1/5/94, 1/1/98, 5/5/90, v/v/v)
was then introduced. C2H2/CO2/C2H4mixtures are producedbymixing
threepure gases ormixingbinarymixturewithpure gas. Everyflowrate
was calibrated by self-made soap film flowmeter. Outlet gas from the
column was monitored using gas chromatography (GC-9860-5CNJ)
with the thermal conductivity detector TCD. After the breakthrough
experiment, the sample was regenerated with an Ar flow of 5mLmin−1

under 120 °C for 8 h or under vacuum at 120 °C for 8 h.

Fitting of experimental data on pure component isotherms
The unary isotherms for C2H2 and CO2 measured at three different
temperatures 278K, 298 K, and 308K in ZNU-6 were fitted with
excellent accuracy using the dual-site Langmuir model, where we
distinguish two distinct adsorption sites A and B:

q=
qsat,AbAp
1 + bAp

+
qsat,BbBp
1 +bBp

ð1Þ

In Eq (S1), the Langmuir parameters bA,bB are both temperature
dependent

bA = bA0 exp
EA

RT

� �
;bb =bB0 exp

EB

RT

� �
ð2Þ
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Fig. 5 | C2H4 purification. Experimental breakthrough curves of ZNU-6 for binary
mixture a C2H2/C2H4 (1/99) and CO2/C2H4 (10/90) at 298K. Experimental break-
through curves of ZNU-6 for ternary mixture b C2H2/CO2/C2H4 (1/1/98), c C2H2/
CO2/C2H4 (1/5/94), and d C2H2/CO2/C2H4 (1/9/90). e Comparison of the captured

C2H2 amount and C2H4 productivity fromC2H2/CO2/C2H4 (1/9/90) ternarymixture.
f Five cycles of experimental breakthrough curves of ZNU-6 for C2H2/CO2/C2H4 (1/
9/90) at 298K (1–4: dry condition, 5: humid condition). Source data are provided as
a Source Data file.
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In Eq. (2), EA,EB are the energy parameters associated with sites A,
and B, respectively.

The corresponding unary isotherms for C2H4 measured
at three different temperatures 278 K, 298 K, and 308K in ZNU-6
were fitted with excellent accuracy using the single-site Langmuir
model.

q=
qsat,AbAp
1 + bp

ð3Þ

The unary isotherm fit parameters for C2H2, CO2, and C2H4 are
provided in Table S1.

IAST calculations
The adsorption selectivity for separation of binary mixtures of species
1 and 2 is defined by

Sads =
q1=q2

p1=p2
ð4Þ

where q1, q2 are the molar loading (units: mol kg-1) in the adsorbed
phase in equilibrium with a gas mixture with partial pressures p1, p2 in
the bulk gas.

Calculation of isosteric heat of adsorption (Qst)
The isosteric heat of adsorption, Qst, is defined as

Qst = � RT2 ∂ lnp
∂T

� �
q

ð5Þ

where the derivative in the right member of Eq. (5) is determined at
constant adsorbate loading, q. The calculations are based on the
Clausius-Clapeyron equation.

Density functional theory calculation
In this work, the DFT-based calculations were carried out using
the CP2K package45. The Perdew-Burke-Ernzerhof (PBE) exchange
functional46, Gaussian plane wave (PAW) pseudopotentials47 and DZVP
basis sets48 for carbon, oxygen, fluorine, nitrogen, germanium and
copper atoms, were used to describe the exchange–correlation inter-
actions and electron–ion interaction, respectively. At the same time,
the PBE-D3 method49 with Becke–Jonson damping for all atoms and
Hubbard U corrections for the open-shell 3d transition metal (Cu) was
used for geometry optimizations. TheU value of 5.0 eVwas used in this
study. In all calculations, the net charges of simulation systems were
set to zero. The adsorption energy can be obtained from formula
below:

Eads = Eadsorbate+ substrate � Esubstrate � Eadsorbate ð6Þ

where Eadsorbate+substrate and Esubstrate were the total energies of the
substrate with and without adsorbate, and Eadsorbate was the energy of
the adsorbate.

Data availability
The authors declare that the data supporting the findings of this study
are available within the article and Supplementary Information. The
X-ray crystallographic data related to ZNU-6 have been deposited at
the Cambridge Crystallographic Data Centre (CCDC), under deposi-
tion numbers 2192744–2192747, respectively. These data can be
obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_
request/cif. The data that support the findings of this study are avail-
able from the corresponding author. Besides, Sourcedata areprovided
with this paper.
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