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A B S T R A C T   

The pore space in gas shale spans multiple scales, ranging from nanometers to micrometers with an extremely 
complex structure and strong microscopic heterogeneity. Existing low-temperature gas adsorption (LTGA) pore 
size distribution (PSD) analysis models are based on the assumption of a one-dimensional tubular model and 
there is a lack of sufficient basis for selecting the most appropriate inversion model among the various types 
available. In this study, a comprehensive characterization of numerous samples from the Wufeng and Longmaxi 
Formation in the southern Sichuan Basin was conducted using different methods and inversion models. Based on 
multiple dimensions, such as fitting errors, the correlation between different methods including low-temperature 
CO2 adsorption (LTCA), nitrogen adsorption (LTNA), and large-scale mosaic Scanning Electron Microscopy 
(LAM-SEM), the most suitable one-dimensional models for LTCA and LTNA PSD analysis for the studied shale 
samples are determined. The simulation of gas condensation processes on LAM-SEM images yielded pore volume 
(PV) in the range of 32–48 nm comparable to the PV characterized by LTNA. Furthermore, the differences 
observed in PSDs between the gas condensation simulation procedure and the equivalent circular area diameter 
method indicate that irregular corner regions within larger pores are attributed to the volume of smaller-sized 
pores during gas adsorption characterization. It is revealed that the correlation between stitched surface area 
(SA) and maximum methane adsorption is stronger than individual characterizations, indicating that both mi-
cropores and mesopores contribute significantly to adsorption, and both characterization methods need to be 
employed to obtain SSA that influences methane adsorption. The research findings are helpful to the improve-
ment of the multi-scale pore characterization level and evaluation of shale reservoirs.   

1. Introduction 

Shale gas is of great potential and plays an important part in the 
natural gas supply. Compared with reservoir rock of conventional oil 
and gas, the size of dominating pores in gas shales is reduced to the 
nanometer scale across multiple orders of magnitude, while the porosity 
is just reduced several times [1–5]. Therefore, the number density of 
pores in shale is increased significantly. Furthermore, it is disclosed by 
SEM (Scanning Electron Microscopy) images that pores develop in both 
organic content and inorganic minerals [6–8]. The organic matter is 

distributed in a dispersed and blocky form with the size of tens of 
nanometers to tens of micrometers [9–11]. To obtain a representative 
PSD of a shale, the field of view needs to be over hundreds of micro-
meters. Therefore, the scale span from the dominating pore to the 
representative field of view for shale is more than an order of magnitude 
larger than that of conventional reservoirs. Existing three-dimensional 
digital imaging techniques cannot directly meet this requirement, and 
combining multiple methods to determine the PSD is a more realistic 
option. 

The main methods include low-temperature nitrogen adsorption 
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(LTNA), low-temperature carbon dioxide adsorption (LTCA), high- 
pressure mercury injection (HPMI), large area mosaic SEM image 
(LAM-SEM), focused-ion-beam SEM (FIB-SEM) and Micro Computed 
Tomography (μ-CT), etc. [12–15] Low-temperature gas adsorption 
(LTGA, including LTNA, LTCA, etc.) methods use molecules as probes to 
detect the pore size, the detectable range spans from the diameter of the 
molecule to tens of nanometers and hundreds of nanometers. The upper 
limit depends on the maximum relative pressure (relative pressure 
which varies from 0 to 1 is the ratio of absolute pressure to the saturated 
vapor pressure, namely P0, of the gas at the operating temperature) that 
the apparatus can reach and the inversion model [16]. HPMI interprets 
the injected mercury volume versus injected pressure to the PV versus 
size according to the relationship between the size and the capillary 
force. For a complicated pore network, the obtained PV versus size 
mainly reflects the volume of the pore body that is controlled by a 
narrow throat [12,17,18]. Among the imaging methods, only two- 
dimensional LAM-SEM can representatively cover the mesopores and 
macropores in the matrix of shale with the highest resolution of 4 nm 
and the field of view of hundreds of micrometers [1,10]. 

The understanding of the difference in the characterization using 
different methods currently still stays at the qualitative stage and the 
level of basic principle. There is a lack of comprehensive and quantita-
tive comparison. The adoption of the inversion method is relatively 
arbitrary without a solid foundation, and this may lead to problems of 
inconsistency and inaccurate. Take the LTNA as an example, as the 
experimental apparatus is relatively less expensive and the analysis 
procedure is efficient, this method has been widely used by research 
institutes and engineering units [19–24]. According to the mechanism 
that the condensation pressures of gas in pores with different sizes vary, 
the volume of the respective pores can be measured by the number of 
condensed molecules. The core of the method is the relationship be-
tween the condensation pressure and the pore size. Methods from the 
BJH (Barrett-Joyner-Halenda) model based on the original Kelvin 
equation to the modified versions and later the density functional theory 
(DFT) methods [16,25–27] are developed successively. As the fineness 

improves, it also leads to variety [28–32]. Considering the differences in 
the shape of the pore, the content of the pore wall, wall heterogeneity, 
and stability, tens of DFT-type models have been developed. Inversed 
PSD with these models varies to different degrees [33]. The common 
feature of these models is that they all treat the pore space as one- 
dimensional tubular pores. There is a lack of DFT models that consider 
multi-dimensional pores. For materials with one-dimensional pore 
structure, researchers can select the DFT model based on the under-
standing of the features of the material [34,35]. However, for gas shales 
with complicated pore structure and strong heterogeneity, the under-
standing of the optimal DFT model is insufficient and there is a lack of 
effective guidance and basis for the optimal selection of existing one- 
dimensional models. 

There are four main types of bases for the selection of the LTGA 
inversion model. The first type is the qualitative similarity in the shape 
of PSD. Li et al. (2015) utilized BJH and DFT models to interpret the PSD 
of shale samples and found the results are similar while DFT results show 
more peaks [36]. Sharifigaliuk et al. utilize the conformance of the trend 
and peaks of the dV/dlog(W) (the differential PV versus natural log of 
pore width) curve with incremental pore size as a guideline to qualita-
tively conclude that the DFT model is better than the BJH and NLDFT 
models [34]. The second one is the quantitative fitting error between the 
fitted isotherm and the experimental isotherm. Zhang et al. (2017) 
showed that the DFT model is more suitable than non-local density 
functional theory (NLDFT) models as the standard deviation between 
the DFT-fitted and experimental adsorption isotherms is smallest (<0.5 
mmol/g for DFT-fitted, while up to above 2 mmol/g for NLDFT-fitted) 
[35]. Fu et al. compared the root mean square error (RMSE) of model- 
fitted isotherms with respect to the experimental ones and found the 
quenched solid density functional theory (QSDFT) model showed a 
smaller RMSE than NLDFT models (1.074–2.324 for QSDFT-fitted, while 
1.074–2.34 for NLDFT-fitted) [12]. The third one is the quantitative 
correlation between the derived parameters, such as PV, SA etc. Pang 
et al. concluded that the DFT model is more suitable than the BJH model 
as the adjusted R2 between the DFT-derived SA, PV and average pore 

Fig. 1. The location of studied wells and the vertical distribution of the studied samples.  
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diameter is higher (0.85 and 0.50 for DFT-derived, while 0.82 and 0.41 
for BJH-derived) [37]. Wang et al. investigated the correlations between 
multifractal parameters using the BJH and DFT models and found the 
DFT model is optimal [38]. Wei et al. compared the correlation of SA and 
PV using different models and found that the consistency of micro-pores 
using different models is higher than that of meso-pores [39]. The last 
one is the conformance with the inversed PSD from other LTGA iso-
therms. Wang et al. used the micro-PSD obtained by GCMC (Grand 
Canonical Monte Carlo) and NLDFT models applied on the LTCA iso-
therms of 5 shale samples to evaluate other models applied on the LTNA 
isotherms. It is found that the HK (Horvathe-Kawazoe) model results 
showed a similar trend as the CO2-GCMC results, while the NLDFT and 
QSDFT results show different trends [33]. Existing studies showed that 
the inversed PSD by different models and from different LTGAs can vary 
significantly. The optimal models obtained from different studies are 
inconsistent. The root cause lies in the complex pore structure of shale, 
which affects the feasibility of using simplified one-dimensional models. 
In general, it is believed that DFT-type models are superior to the BJH 
model. However, the DFT model has multiple variants and there is a lack 
of further and comprehensive evaluation of their differences. For the 
Wufeng and Longmaxi formation shale in the Sichuan Basin, there is a 
wide variety of developed pore types, and research on how to determine 
the widely applicable and most suitable PSD is rare. 

On the other hand, with the development of imaging methods, 
obtaining large-scale high-resolution images has become possible, 
providing new means for further validating the optimal model of LTGA. 
However, there is a lack of effective research on the correlation between 
the PSD characterized by imaging and the PSD characterized by LTNA. 
This study aims to optimize the inversion models by simultaneously 
employing different approaches such as LTCA, LTNA, and LAM-SEM for 
characterization. The optimization will be based on various aspects, 
including the fitting errors of each model and the correlation of the 
overlapping portions characterized by different models. This paper is 
arranged as follows: the samples and methods investigated in this study 
are introduced in Section 2, and the optimization procedures and results 
will be provided in Section 3, finally, the conclusions are drawn. 

2. Samples and methods 

2.1. Sample information 

The 106 shale samples investigated in this study were collected from 

10 shale gas wells located in the southern region of the Sichuan Basin, 
China (as shown in Fig. 1). These wells include AS31, BS22, NS2, RS7, 
RS2, RS4, RS5, TS2, BS13 and SS1H, belonging to the Changning, 
Weiyuan, Luzhou, and Yuxi blocks of PetroChina. The samples belong to 
the Wufeng Formation and the 1st to 4th sublayers of the 1st sub- 
member of the first Member of Longmaxi Formation. The depths of 
the samples range from 1500 m to 4400 m. 6–18 samples are obtained 
from each well. Fig. 1 illustrates the vertical distribution of samples from 
the RS4 well. The TOC and mineral contents of the analyzed samples can 
be further examined in the published work [40]. 

2.2. Low temperature CO2 adsorption and N2 adsorption 

2.2.1. Experimental procedure 
The studied samples are crushed and sieved to obtain 1–3 g particles 

with a size range of 20–40 mesh [29]. Before loading into the specific 
surface area and pore size analyzer (Beishide 3H2000-PS1, produced by 
Beishide Instrument, Beijing, China) for adsorption procedures, the 
particles were vacuumed and degassed at 105 ◦C for at least 4 h [41–43]. 
LTCA tests were conducted at 0 ◦C with a relative pressure range of 
0–0.033. LTNA tests were performed at 77.3 K with a relative pressure 
range of 0–0.99. 

2.2.2. Inversion models of PSD 
Previous studies have shown that the desorption branches of LTNA 

isotherms mainly reflected the controlling effect of pore throat on the 
pore body and cannot characterize the size of the pore space accurately 
[44]. Therefore, the adsorption branches of LTNA isotherms are utilized 
to interpret PSD [45]. Previous studies have shown that DFT-type 
models are more effective in characterizing micropores compared to 
BJH or DH models [18,34]. Therefore, only DFT models are considered 
in this study. The obtained LTCA isotherms and LTNA isotherms were 
imported into Quantachrome’s ASiQwin software. Various built-in 
models, including multiple NLDFT, QSDFT, and GCMC models, were 
used to generate PSD results. The models and their corresponding ab-
breviations used in this study are listed in Table 1. 

For LTCA, both NLDFT and GCMC models considering the slit-shape- 
type pore were employed. For LTNA, there are 10 inversion models 
belonging to the NLDFT and QSDFT categories. Within each category, 
different models vary in pore geometry and condensation and evapo-
ration mechanisms. The pore geometries include slit, cylinder, sphere, 
and their combinations. The condensation and evaporation mechanisms 
include the adsorption branch and equilibrium transition. These two 
mechanisms describe the gas condensation and evaporation processes in 
one-dimensional pores, which may not be the same in complex porous 
networks. Therefore, both kinds of models are applied to interpret the 
adsorption branch and the best one is determined through comprehen-
sive analysis. 

Both the NLDFT and QSDFT categories include the silt pore with 
equilibrium transition model, the cylindrical pore, and the combination 
of slit and cylindrical pores with equilibrium transition models. Only the 
QSDFT category has the cylindrical pore, the combination of slit and 
cylindrical pores, the combination of cylindrical and spherical pores, 
and the combination of slit, cylindrical and spherical pore with 
adsorption branch models. Theoretically, a more diverse range of 
inversion models can be generated with different combinations of pore 
types and based on the consideration of surface heterogeneity. However, 
for gas-bearing shale with complex pore structure, it is necessary to 
establish an appropriate equivalent model. There is a lack of effective 
guidance in this regard. This study aims to evaluate the above 12 models 
and select the ones that can most reasonably characterize the pore 
structure of the studied shale samples, in order to provide a foundational 
understanding for the development of more refined equivalent models in 
the future. 

When performing PSD analysis using NLDFT/QSDFT/GCMC, a 
fitting error is provided as an evaluation metric to assess the degree of fit 

Table 1 
The DFT and GCMC kernels concerned in this study.  

Adsorbate DFT / GCMC Kernel Abbreviation 

CO2 CO2 at 273 K on carbon (NLDFT model) CO2-NLDFT 
CO2 at 273 K on carbon (MC model) CO2-GCMC 

N2 N2 at 77 K on carbon (slit pore, NLDFT 
equilibrium model) 

N2-Slit-NLDFT-Equ 

N2 at 77 K on carbon (slit pore, QSDFT 
equilibrium model) 

N2-Slit-QSDFT-Equ 

N2 at 77 K on carbon (cylinder. pore, NLDFT 
equilibrium model) 

N2-Cyli-NLDFT- 
Equ 

N2 at 77 K on carbon (cylinder. pore, QSDFT 
equilibrium model) 

N2-Cyli-QSDFT- 
Equ 

N2 at 77 K on carbon (cylinder. pore, QSDFT 
adsorption branch) 

N2-Cyli-QSDFT- 
Ads 

N2 at 77 K on carbon (slit/cylinder. pore, NLDFT 
equilibrium model) 

N2-Sl/Cy-NLDFT- 
Equ 

N2 at 77 K on carbon (slit/cylinder. pores, 
QSDFT equilibrium model) 

N2-Sl/Cy-QSDFT- 
Equ 

N2 at 77 K on carbon (slit/cylinder. pores, 
QSDFT adsorption branch) 

N2-Sl/Cy-QSDFT- 
Ads 

N2 at 77 K on carbon (cylinder./sphere pores, 
QSDFT adsorption branch) 

N2-Cy/Sp-QSDFT- 
Ads 

N2 at 77 K on carbon (slit/cylinder./sphere 
pores, QSDFT adsorption branch) 

N2-Sl/Cy/Sp- 
QSDFT-Ads  
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to the experimental isotherm which has the following expression. 

δ =

∑N
i=1

|Vfit,i − Vmeasure,i|
Vmeasure,i

N
× 100% (1)  

where δ is the fitting error, N is the number of data points in the 
experimental isotherm. Vmeasure,i is the gas adsorption amount at the ith 
relative pressure point, while Vfit,i is the fitted one. 

2.3. Large area mosaic SEM imaging 

In recent years, with the advancement of technology, LAM-SEM 
imaging of shale has become increasingly mature. This technique en-
ables two-dimensional imaging with a resolution of 4 nm and a range of 
hundreds of micrometers. By observing grayscale differences, it is 
possible to distinguish pores and obtain their distribution and 
morphological features in two-dimensional space Compared to tradi-
tional single-field SEM imaging, the observation range has been signif-
icantly expanded, reaching dimensions of hundreds of micrometers in a 
single dimension, which is close to the size of particles used for gas 
adsorption, resulting in more representative results. 

The samples are first mechanically cut into 1 cm-sized cubes, fol-
lowed by mechanical polishing and argon ion polishing of the cubes’ 
vertical bedding planes to obtain a smooth surface. The samples undergo 
large-scale scanning using multiple-patch stitching on the Zeiss Merlin 
field emission scanning electron microscope (FE-SEM), employing 
ATLAS 5 software. Initially, a consolidation scan is performed at a res-
olution of 1 μm/pixel, followed by the selection of representative areas 
for high-precision, large-field scanning with a resolution of 4 nm/pixel 
and a range of 400 μm × 400 μm. The sample preparation and imaging 
procedure mentioned above were conducted at the Institute of Geology 
and Geophysics, Chinese Academy of Sciences. More details on the LAM- 
SEM imaging can be referred to Wu et al. (2020) [1]. Appendix 1 

includes the results of representative analysis, and previous studies have 
obtained representative sizes around 150 μm using different methods 
[46]. 

The resulting images are stored as nearly ten thousand pictures with 
dimensions of 1024 × 1024 pixels. There is a situation where a large 
number of pores are divided into serval parts in different images, which 
may lead to the subdivision of the same pore space. To avoid this issue, 
we stitched adjacent sets of 14 × 14 images to create large images with 
dimensions of at least 14336 × 14336 pixels, resulting in around 50 
images in total. This approach significantly reduces the occurrence of 
“subdivided pore space” for the same pore. The analysis of pore area 
versus pore diameter was performed individually on each large image, 
and the pore areas in different size ranges were ultimately summarized. 

The commonly used method for analyzing pore area-pore size is 
based on the grayscale difference between pores and matrix. By setting a 
reasonable threshold, the image is segmented into a binary image, and 
the connected regions with pore pixel values in the binary image are 
used to calculate their areas. The diameter of a circle with an equivalent 
area is considered the diameter of the connected region. This method is 
based on the two-dimensional connectivity of pores, making it easy to 
operate and intuitive, and it is widely used. It is referred to the “EqDia” 
(equivalent diameter) method in this study. Fig. 2 illustrates an example 
where different connected regions are represented by different colors 
(due to a large number of connected regions, there may be instances 
where the same color is used in multiple regions). 

In addition, we propose a novel analysis method. This method is 
based on the principle that the condensation pressure varies in different 
pore sizes during LTGA, and the condensation process is not limited by 
connectivity. Therefore, it can be assumed that all pores in the two- 
dimensional image are connected in the three-dimensional space, 
eliminating the need for additional connectivity determination. By 
simulating the LTGA process with increasing relative pressures, gas 
condensation occurs in pore spaces of different sizes. This corresponds to 

Fig. 2. An example of separating the void pixels based on connectivity.  
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Fig. 3. Analysis result (a) and schematic diagram of condensation region identification process (b).  

Fig. 4. Regions undergoing “condensation” for the image shown in Fig. 2.  
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determining the portion of connected regions with curvature radii 
smaller than the corresponding values in all connected regions. The 
areas of these regions are then aggregated to obtain the cumulative pore 
area from the minimum pore size to the given pore size. The differential 
pore area corresponding to the specific pore size can be determined. This 
method is referred to “CondSim” (Condensation Simulation) method 
here. 

The specific process is achieved using two morphological image 
operations: erosion and dilation. Pore pixels are labeled as 1. In the 
erosion process, for each pore radius r, a circular structuring element 
matrix is constructed with the corresponding radius (the circular region 
with a radius of r in the center is assigned a value of 1, while the rest are 
assigned 0, it can also be referred to as a convolution kernel). Each pixel 
in the image is processed, and if both the surrounding pixels within the 
convolution kernel are pores, the pixel remains a pore; otherwise, it is 
labeled as a matrix. Through the erosion process mentioned above, the 
region from the pore wall to the interior with a radius of r can be 
identified and labeled as matrix pixels. Furthermore, the dilation oper-
ation is applied to the eroded image using the same convolution kernel. 
If any pore is present in the surrounding pixels within the convolution 
kernel region, the pixel is considered a pore; otherwise, it is a matrix. By 
performing erosion and dilation operations, the regions with a diameter 
of the meniscus smaller than 2*r can be identified as the areas where 
“condensation” occurs. The specific process is illustrated in Fig. 3. 

Fig. 4 illustrates the regions undergoing “condensation” (highlighted 
in pink) performing the aforementioned method on the image shown in 
Fig. 2. 

By simulating the LTGA and condensation process with morphology 
operations on a LAM-SEM image with a resolution of 4 nm and a FOV of 
400 μm, we can obtain the pore area-size distribution, SSEM(d), ranging 
from 4 nm to the micrometer scale. SSEM(d) represents the cumulative 
pore area using pores ranging from the smallest size to a diameter of d, 
and the unit is nm2. Assuming that the pore size remains constant in the 
direction perpendicular to the SEM image with a thickness of 1 nm, we 
can calculate the pore volume-size distribution VSEM(d). VSEM(d) rep-
resents the cumulative PV using pores ranging from the smallest size to a 
diameter of d, and the unit is cm3/g. These two distributions are related 
by the following equation: 

VSEM(d) =
SSEM(d) × 10− 14 × 10− 7

SSEM,total × 10− 8 × 10− 7 × ρbulk
=

SSEM(d)
SSEM,total × 106 × ρbulk

(2)  

where SSEM,total is total area of LAM-SEM images, the unit is μm2, ρbulk is 
the bulk density of the shale sample, and the unit is g/cm3. Besides the 
morphology operation (CondSim) method, the pore area-size distribu-
tion obtained by the EqDia method can also be transformed into the pore 
volume-size distribution according to Eq. (2). 

2.4. High-pressure isothermal methane adsorption 

The methane adsorption capacity in shale gas is a key parameter for 
evaluating gas content. The micro-pore surfaces in shale provide sites for 
methane adsorption, and the methane adsorption characteristics of 
samples are closely related to the micro-pore structure [47]. Therefore, 
in addition to the correlation analysis between different pore structure 
characterization methods, this study further investigates the correlation 
between high-pressure methane adsorption characteristics and the re-
sults of different gas characterizations to clarify the pore range that 
contributes primarily to methane adsorption. 

The sample is ground and approximately 100 g of particles in the size 
range of 8–20 mesh (with diameters ranging from 0.84 nm to 2.36 nm) 
are selected for high pressure methane adsorption experiment. The 
samples were dried and vacuumed at 105 ◦C for at least 7 h. Subse-
quently, the sample will be loaded into a volumetric high-pressure gas 
adsorption instrument (3H2000-PH690) developed jointly by the Insti-
tute of Mechanics, Chinese Academy of Sciences, and Beishide Instru-
ment. The methane adsorption isotherms are measured with 12 pressure 
points spanning 0.5–50 MPa at a constant temperature of 40 ◦C. The 
detailed calculation procedure for the adsorption amount can be 
referred to Jiang et al. (2022) [40]. The measured adsorption isotherms 
will be fitted using the three-parameter Langmuir equation with the 
following form. 

Vex(p) =
(

VLp
pL + p

)(

1 −
ρfree

ρads

)

(3)  

where Vex(P) represents the measured excess adsorption amount (ml/g), 
VL is the maximum adsorption capacity (ml/g), PL is the Langmuir 
pressure (MPa), ρads is the adsorbed phase density (g/cm3), and ρfree is 
the density of free state methane (g/cm3) at pressure P (MPa). 

3. Results and discussions 

3.1. Comparison of fitting errors of different methods 

When performing PSD analysis using NLDFT/QSDFT/GCMC, a 
fitting error is provided as an evaluation metric to assess the degree of fit 
to the experimental isotherm which has the following expression. 

When conducting PSD analysis using NLDFT/QSDFT/GCMC, the 
fitting error generated by the inversion models serves as an evaluation 
metric for assessing the quality of the model fit. Firstly, the LTCA iso-
therms and LTNA isotherms are individually analyzed using various 
inversion models listed in Table 1. Subsequently, a comparative analysis 
of the fitting errors is performed to assess the quality of the fits across the 
different models. 

3.1.1. Inversion models for LTCA isotherms 
The distribution of fitting errors of the 106 studied samples between 

the optimal fit of the adsorption isotherms obtained from CO2-GCMC 
and CO2-NLDFT models and the experimental isotherms are illustrated 
with a boxplot in Fig. 5. The red line represents the median value of the 
fitting error, while the blue box indicates the interquartile range (25th to 
75th percentile). The black dashed line represents the range of non- 
outlier values, and the red dots represent any outliers. It can be 
observed that the median values of the fitting errors for both models are 

Fig. 5. Distribution of fitting errors for 106 shale samples using different LTCA 
inversion models. 
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relatively close, with CO2-NLDFT showing slightly lower values. How-
ever, the interquartile range and the range of non-outlier values for the 
CO2-NLDFT model are broader compared to the CO2-GCMC model. 
Therefore, further comprehensive assessments are required to make a 
preferable selection between the two models. 

Chandra also compared these two methods from the perspective of 
fitting error and analyzed seven samples. It was found that in most cases, 
GCMC exhibited smaller errors [48]. In contrast to the CO2-NLDFT 
model based on a one-center Lennard-Jones potential, CO2-GCMC is 

based on a three-center potential function, capable of incorporating both 
Lennard-Jones potential and electrostatic contributions [49]. Pang et al. 
also conducted a comparison of the fitting errors between CO2-GCMC 
and CO2-NLDFT methods. The study found that the CO2-GCMC method 
exhibited relatively smaller fitting errors compared to the CO2-NLDFT 
method [37]. 

3.1.2. Inversion models for LTNA isotherms 
The distribution of fitting errors between the optimal fit of the 

Fig. 6. Distribution of fitting errors for 106 shale samples using different LTNA inversion models.  

Fig. 7. Distribution of p and γ for 106 shale samples using the CO2-GCMC model and different LTNA inversion models.  
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Fig. 8. Distribution of p and γ for 106 shale samples using the CO2-NLDFT model and different LTNA inversion models.  

Fig. 9. Pore volume-size distributions of 8 BS22-well samples from LAM-SEM 
using two methods. 

Fig.10. Pore volume-size distributions of 8 BS22-well samples from LTNA 
using two methods. 
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adsorption isotherms obtained from 10 different NLDFT/QSDFT models 
and the experimentally measured adsorption isotherms for the 106 
samples are illustrated with a boxplot in Fig. 6. From the median relative 
fitting errors, it can be observed that three NLDFT models are signifi-
cantly higher than the other QSDFT models, indicating that the QSDFT 

models, which consider surface heterogeneous, can better characterize 
the LTGA characteristics of shale samples. Among all the QSDFT models, 
both the N2-Sl/Cy-QSDFT-Equ model, which considers equilibrium 
transition, and the N2-Sl/Cy-QSDFT-Ads model, which employs an 
adsorption branch, exhibit significantly lower median relative errors 

Fig. 11. Correlation between PV obtained by LAM-SEM and LTNA for 106 shale samples. CondSim versus QSDFT-Sl/Cy- Equ (a), EqDia versus QSDFT-Sl/Cy- Equ (b), 
CondSim versus QSDFT-Sl/Cy- Ads (c), EqDia versus QSDFT-Sl/Cy- Ads (d), 
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compared to the other models. Additionally, the 25th to 75th percentile 
range of these two models is closer to the zero-axis compared to the 
other QSDFT models. This suggests that among the five pore types 
considered, namely slit-shaped, cylindrical, slit-shaped + cylindrical, 
cylindrical + spherical, and slit-shaped + cylindrical + spherical, the 
model incorporating a combination of slit-shaped and cylindrical pores 
best matches the LTGA isotherm characteristics of shale samples. In this 
model, pores with diameters below 2 nm are considered slit-shaped 
pores, while those above 2 nm are considered cylindrical pores. 

Within the two models, it is observed that the model utilizing the 
adsorption branch, which is utilized by Chandra et al. to calculate the 
PSD [48], exhibits slightly lower median relative errors. However, the 
25th to 75th percentile range and the range of non-outlier values for this 
model are slightly wider compared to the model considering equilibrium 
transition. Further comprehensive assessments are required to make a 
preferable selection between these two models. 

3.2. Correlation analysis of the overlapped between PSD from different 
LTGA methods 

The maximum pore diameter dCO2 ,max obtained from the analysis of 
LTCA using GCMC and NLDFT models is 1.4748 nm, while the minimum 
pore diameter dN2 ,min obtained from the analysis of LTNA using different 

Fig. 12. Correlation analysis between VL and SSAs determined by 
different methods. 

Fig. A1. Variation of pore area fraction with the width of the analyzed domain.  

Fig. A2. PSDs derived with different model for the TS2-28JX sample.  

Fig. A3. PSDs derived with different model for the SS1H2-7-56JX sample.  

Fig. A4. PSDs derived with different model for the RS7-72JX sample.  
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NLDFT/QSDFT models is 0.6140 nm. The existence of overlapping PSDs 
obtained from these two different characterization methods provides an 
opportunity to assess their correlation. Let V(d) denote the cumulative 
PV in cm3/g from the smallest pore to a pore diameter of d. Thus, VCO2 (d)
and VN2 (d) denote the PV distributions obtained from LTCA and LTNA, 
respectively. Two parameters are defined for correlation analysis: the 
Pearson correlation coefficient p [50] of VCO2 (d) and VN2 (d) in the range 
of dN2 ,min to dCO2 ,max, and the ratio γ of the PV characterization of N2 
adsorption to CO2 adsorption. 

γ =
VN2

(
dCO2 ,max

)
− VN2

(
dN2 ,min

)

VCO2

(
dCO2 ,max

)
− VCO2

(
dN2 ,min

) (4) 

For the 106 samples, cross-calculations of p and γ values between 
two LTCA inversion models and 10 LTNA inversion models were 
performed. 

Firstly, the comparison between the CO2-GCMC model and the 
different LTNA inversion models is analyzed. As shown in Fig. 7, the 
Pearson correlation coefficients p for all models are greater than 0.9, 
except for the QSDFT-Equ/Ads model for cylindrical pores and the 
QSDFT-Ads model for the combination of cylindrical and spherical 
pores. The median p-values for the other models are all greater than 
0.95, indicating a strong correlation between the PSDs obtained from 
the two gas adsorption methods. Interestingly, the NLDFT model for 
cylindrical pores, which had relatively larger fitting errors in the pre-
vious analysis, actually shows the median p-value closest to 1. This 
suggests that, in situations where the correlation coefficients are 
generally high, the Pearson correlation coefficient may not be sensitive 
enough to reveal subtle differences. 

Looking at the PV ratio γ, except for the NLDFT model for slit-shaped 
pores, which has a significantly larger median value than 1, the median 
values for the other models are generally close to 1. This indicates that 
the PVs within the overlapping pore size range characterized by low- 
temperature CO2 and N2 adsorption are relatively close. 

Next, the comparison between the CO2-NLDFT model and the 
different LTNA inversion models is examined. As shown in Fig. 8, similar 
to the CO2-GCMC model, the Pearson correlation coefficients are 
generally high, with median values closer to 1. However, the distribu-
tion of outliers is wider, and the distribution appears more scattered. 
Regarding the PV ratio γ, the median values for all models are signifi-
cantly greater than 1. This indicates that the PVs within the 0.6140 nm 
to 1.4748 nm range obtained from the NLDFT analysis of LTCA are 
noticeably smaller than the overlapping pore size range characterized by 
N2 adsorption. 

In summary, it is observed that the PVs within the overlapping range 
calculated by the CO2-GCMC model are closer to those obtained from N2 
adsorption. For the PSDs, as shown in the appendix, the width of the 
peaks around 0.8 nm founded in PSD derived by CO2-GCMC and N2-Sl/ 
Cy-QSDFT-Equ model are more consistent. Therefore, it is more inclined 
to recommend using the CO2-GCMC method for PSD analysis of shale 
samples from the Wufeng and Longmaxi Formation in the Sichuan Basin, 
China. This conclusion aligns with the findings reported by Pang et al. 
[37], although they used the correlation between SA and PV obtained 
from the two models to determine the best model. The CO2-GCMC model 
has also been used by Wang et al. [33] to evaluate inversion models for 
LTNA isotherm. 

In the comparison of LTNA inversion models, particularly for the 
combination of slit-shaped and cylindrical pores with equilibrium 
transition (Equ) and adsorption branch (Ads) models, it remains chal-
lenging to clearly determine the superiority through the correlation 
analysis between CO2 and N2 adsorption. 

3.3. Correlation analysis of PSDs obtained by LTNA and LAM-SEM 
images 

By using high-resolution SEM imaging, PSDs as low as 4 nm in 

diameter can be obtained, which overlaps with the characterization 
range of LTNA (up to 50 nm). A comparison can be made between the 
PSDs characterized by both methods in the overlapping range. However, 
there is currently limited research in this area. To establish a correlation 
between these two kinds of methods, there are challenges in terms of 
sample heterogeneity, dimensional characterization, and analytical 
principles. The current realistic approach is to analyze a large number of 
samples to select the overall optimal model among existing ones. In this 
study, 106 shale samples from different formations and wells in the 
southern Sichuan Basin are selected for analysis. The PSDs obtained by 
performing different analysis methods on LAM-SEM images and QSDFT- 
Sl/Cy-Equ (referred to Equ below for convenience) and QSDFT-Sl/Cy- 
Ads (referred to Ads below for convenience) inversion models on 
LTNA isotherms were compared. 

For LAM-SEM images, both the EqDia method and CondSim method 
were used to calculate PSDs. Taking 8 shale samples from the BS22 well 
as an example to demonstrate the difference of results obtained by these 
two methods. As shown in Fig. 9, the pore volume-size distribution is 
presented using stacked bars with different colors indicating different 
pore size ranges. It can be observed that the proportion of larger PVs 
determined by the EqDia method is higher than that obtained from the 
CondSim method. The reason behind this difference lies in the fact that 
in the macroscopic pores, particularly in localized regions such as the 
edge or regions with smaller liquid curvature, condensation occurs at 
lower relative pressures (compared to the relative pressure at which gas 
condensation occurs in the central part of the macroscopic pores) during 
the condensation process. Consequently, this portion of the volume is 
accounted for in smaller-sized pores. The volume of a connected region 
can be divided into several parts according to the sequence of gas 
condensation in the CondSim method. 

For the LTNA isotherms, the two preliminary selected models, Equ 
and Ads models, were applied to interpret PSDs. The same 8 shale 
samples from the BS22 well were taken as an example to demonstrate 
the difference, as shown in Fig. 10. The stacked bars in different colors 
represent the PV in different pore size ranges. It can be observed that the 
total PVs obtained are consistent for the same sample since both 
methods are based on the same adsorption isotherm. However, the PSDs 
obtained by the two models differ. The Ads model reveals a PSD ranging 
from 0 to 34 nm. In contrast, the Equ model shows a PSD ranging from 
0 to 51 nm, with a higher proportion of larger PVs compared to the 
former model. 

The underlying reason for this discrepancy lies in the difference in 
the gas condensation/evaporation mechanisms described by these two 
models. For a one-dimensional pore structure, the nitrogen gas con-
denses through liquid bridging and exhibits a certain degree of hyster-
esis, while evaporating through the gas–liquid two-phase meniscus. For 
pores of the same size, the condensed liquid bridge forms at a higher 
relative pressure compared to the relative pressure at which gas evap-
orates [51]. The pore size interpreted by the adsorption branch model is 
smaller compared to that interpreted by the equilibrium transition 
model for the same relative pressure. 

Based on the above analysis, we have four sets of results: two from 
LAM-SEM and two from the interpretation of LTNA isotherms. A cross- 
comparison of these results can be performed. For each comparison, 
the correlation between the PVs characterized by the two methods 
within the overlapping pore size range is examined, both overall and 
within different sub-intervals. The results are shown in Fig. 11. The title 
of each subgraph indicates the pore size range being examined. The x- 
axis represents the PV characterized by LTNA, while the y-axis repre-
sents the PV characterized by LAM-SEM. The black line represents the 
45◦ line, and each point represents a sample. Points closer to the 45◦ line 
indicate a closer agreement between the results obtained by the two 
methods. 

Among all the subgraphs, it can be observed that the PVs between 32 
and 48 nm obtained by applying the CondSim method on LAM-SEM 
images and the Equ model on LNTA isotherms are closest. For all the 
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other comparisons, the LNTA inversed PVs are higher than the LAM- 
SEM-analysis one. There are two main reasons for this feature. Firstly, 
the pores with a size close to the imaging resolution cannot be fully 
resolved through LAM-SEM. According to the study conducted by Wu 
et al. [52], a portion of pores with a diameter smaller than 30 nm might 
not be captured with the LAM-SEM imaging method. There is a possi-
bility that pores close to the resolution of SEM imaging may not be 
identified. The lower limit of this range, 20 nm, is highly consistent with 
the lower limit of pore diameter that can be fully captured by LAM-SEM, 
as indicated by previous studies [52]. The second reason lies in the 
inconsistency of the underlying principles between the analysis 
methods. The EqDia method for LAM-SEM images does not account for 
the variation in condensation conditions within different parts of the 
connected domain. Instead, it calculates the equivalent area circle 
diameter as a whole, resulting in PV distributions in larger size ranges. 
On the other hand, the Ads model for LTNA isotherms considers liquid 
bridge condensation within the pores, with condensation pressure lag-
ging behind. This model tends to underestimate the pore sizes when 
interpreting concave meniscus condensation. For shale, the pore 
network effect is more prominent [53], and the condensation hysteresis 
phenomenon in the adsorption branch is less pronounced [44,54,55], 
and gas condenses through the gas–liquid two-phase meniscus. The 
equilibrium transition model is more suitable to describe the process. In 
conclusion, the use of the N2-QSDFT-Sl/Cy-Equ model considering 
equilibrium transition is more appropriate. 

3.4. Correlation between VL and SSA determined by LTCA and LTNA 

Previous studies have indicated a strong positive correlation between 
the specific surface area (SSA) obtained from LTGA characterization of 
shale samples and their methane adsorption capacity [21]. In this study, 
different LTGA methods and inversion models were employed to obtain 
corresponding PSDs, which can further calculate the SSAs. By con-
ducting a correlation analysis between the SSA results obtained from 
different methods and the characteristic parameters of high-pressure 
methane adsorption, valuable insights can be gained to guide the se-
lection of pore size analysis methods. 

Fig. 12 illustrates the correlation analysis results between the 
Langmuir volume (VL) obtained from high-pressure methane isothermal 
adsorption experiments on shale samples and the SSA obtained from 
LTNA with the QSDFT-Sl/Cy-Equ inversion model, as well as the SSA 
obtained from LTCA with the GCMC inversion model, and the combined 
SSA obtained by integrating the results from both methods. When 
integrating the LTNA and LTCA results, the PSD of the overlapping re-
gion was determined based on the results revealed by LTCA. 

It can be observed that the linear fit between the combined SSA 
obtained from the integration of both methods and the Langmuir volume 
(VL) demonstrates a higher goodness of fit compared to the fit between 
the SSA from LTCA and VL. The fit between the SSA from LTNA and VL is 
the lowest among the three. This indicates that the correlation between 
VL and the SSA of micropores smaller than 2 nm is stronger, while there 
are some micro PVs that remain undetected by LTNA, resulting in a 
slightly lower correlation. The contribution of undetected micropores in 
shale to adsorption cannot be ignored. Among the 106 shale samples, the 
samples from the BS22 well show a significant contribution from these 
micropores, indicating that relying solely on LTNA characterization may 
not provide a comprehensive assessment. Similarly, LTCA also has 
limitations in detecting SSAs of certain mesopores. Overall, the combi-
nation of LTNA and LTCA provides a more comprehensive character-
ization of PSD within a wider range, making it a preferable choice. 

The 106 shale samples studied were collected from various sub- 
layers or formations and different shale gas wells within the research 
area. The strong correlation between the SSA and the VL indicates that, 
for the shale within the region, the SA of the pores is one of the key 
factors influencing the methane adsorption capacity. 

4. Conclusion 

This study addresses the insufficient basis for inversion model se-
lection for LTGA methods and the unclear correlation between their 
result and large-area mosaic scanning electron microscopy analysis re-
sults when characterizing complex pore structures and a wide range of 
PSD in shale. The research was conducted on shale samples from the 
Wufeng and Longmaxi Formation in the southern Sichuan Basin, China. 
Analysis was conducted on 106 shale samples from different wells and 
sublayers or formations, resulting in selection criteria that are more 
statistically significant and universally applicable. The main character-
istics and conclusion of this study are as follows:  

1) The recommended inversion models for CO2 and N2 adsorption, 
which are CO2-GCMC and QSDFT-Sl/Cy-Equ, were optimized based 
on their respective fitting errors, correlation between them, and 
correlation between LAM-SEM and LTNA. This optimization process 
ensured a more comprehensive and thorough basis for selection.  

2) The study demonstrated that the pore volume (PV) characterized by 
LAM-SEM in the 32–48 nm range, as well as the PV characterized by 
LTNA, showed good consistency. This suggests that the percentage of 
PV represented by LAM-SEM at the sub-micrometer level is repre-
sentative. However, it should be noted that gas adsorption pore size 
analysis methods may include a portion of the volume of irregularly 
shaped pores with larger sizes into the smaller pore size range.  

3) Through the correlation analysis between LTNA SSA and high- 
pressure methane adsorption parameters, it was clarified that both 
micropores and mesopores contribute to methane adsorption and 
need to be comprehensively characterized. 
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Appendix 

Representative element area (REA) analysis of pore area fraction for LAM- 
SEM images 

Taking the BS22-1D sample as an example, the porosity (pore area 
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fraction) of the entire LAM-SEM images with a size of 400 μm × 400 μm 
is calculated. Starting with a field of view (FOV) of 10 μm × 10 μm, the 
FOV is gradually increased to 400 μm × 400 μm. For each FOV, sub-
domains are randomly selected from the entire LAM-SEM image, and the 
corresponding porosity is calculated. Therefore, the range of the 
porosity variation with changing FOV size is depicted in Fig. A1. It can 
be observed that when the FOV size exceeds 200 μm, the range of 
porosity variation becomes narrow, indicating that at this point, the 
representative element area (REA) is reached. 

Comparison of PSDs derived with different model from LTCA and LTNA 
isotherms 

Three typical samples are selected from the total 106 samples for 
comparision. For each sample, the distributions of differential pore 
volume versus pore diameter derived from the LTCA isotherm with 
NLDFT and GCMC models and the LTNA isotherm with Sl/Cy-QSDFT- 
Equ model are plotted in one graph. As shown in the following fig-
ures, the CO2-NLDFT derived PSD has a narrower peak around 0.8 nm, 
while the width of the peaks founded in PSD derived by CO2-GCMC and 
N2-Sl/Cy-QSDFT-Equ model are more consistent. 
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